Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6297, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491095

RESUMO

Pseudomonas aeruginosa often colonizes immunocompromised patients, causing acute and chronic infections. This bacterium can reside transiently inside cultured macrophages, but the contribution of the intramacrophic stage during infection remains unclear. MgtC and OprF have been identified as important bacterial factors when P. aeruginosa resides inside cultured macrophages. In this study, we showed that P. aeruginosa mgtC and oprF mutants, particular the latter one, had attenuated virulence in both mouse and zebrafish animal models of acute infection. To further investigate P. aeruginosa pathogenesis in zebrafish at a stage different from acute infection, we monitored bacterial load and visualized fluorescent bacteria in live larvae up to 4 days after infection. Whereas the attenuated phenotype of the oprF mutant was associated with a rapid elimination of bacteria, the mgtC mutant was able to persist at low level, a feature also observed with the wild-type strain in surviving larvae. Interestingly, these persistent bacteria can be visualized in macrophages of zebrafish. In a short-time infection model using a macrophage cell line, electron microscopy revealed that internalized P. aeruginosa wild-type bacteria were either released after macrophage lysis or remained intracellularly, where they were localized in vacuoles or in the cytoplasm. The mgtC mutant could also be detected inside macrophages, but without causing cell damage, whereas the oprF mutant was almost completely eliminated after phagocytosis, or localized in phagolysosomes. Taken together, our results show that the main role of OprF for intramacrophage survival impacts both acute and persistent infection by this bacterium. On the other hand, MgtC plays a clear role in acute infection but is not essential for bacterial persistence, in relation with the finding that the mgtC mutant is not completely eliminated by macrophages.


Assuntos
Proteínas de Bactérias , Infecções por Pseudomonas , Humanos , Animais , Camundongos , Proteínas de Bactérias/metabolismo , Peixe-Zebra/metabolismo , Infecções por Pseudomonas/genética , Fagocitose , Fagossomos/metabolismo , Pseudomonas aeruginosa/metabolismo
2.
Microbiologyopen ; 8(7): e00774, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30628184

RESUMO

Burkholderia cenocepacia is an opportunistic bacterial pathogen that poses a significant threat to individuals with cystic fibrosis by provoking a strong inflammatory response within the lung. It possesses a type VI secretion system (T6SS), a secretory apparatus that can perforate the cellular membrane of other bacterial species and/or eukaryotic targets, to deliver an arsenal of effector proteins. The B. cenocepacia T6SS (T6SS-1) has been shown to be implicated in virulence in rats and contributes toward actin rearrangements and inflammasome activation in B. cenocepacia-infected macrophages. Here, we present bioinformatics evidence to suggest that T6SS-1 is the archetype T6SS in the Burkholderia genus. We show that B. cenocepacia T6SS-1 is active under normal laboratory growth conditions and displays antibacterial activity against other Gram-negative bacterial species. Moreover, B. cenocepacia T6SS-1 is not required for virulence in three eukaryotic infection models. Bioinformatics analysis identified several candidate T6SS-dependent effectors that may play a role in the antibacterial activity of B. cenocepacia T6SS-1. We conclude that B. cenocepacia T6SS-1 plays an important role in bacterial competition for this organism, and probably in all Burkholderia species that possess this system, thereby broadening the range of species that utilize the T6SS for this purpose.

3.
PLoS Pathog ; 14(12): e1007473, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30513124

RESUMO

The opportunistic pathogen Burkholderia cenocepacia is particularly life-threatening for cystic fibrosis (CF) patients. Chronic lung infections with these bacteria can rapidly develop into fatal pulmonary necrosis and septicaemia. We have recently shown that macrophages are a critical site for replication of B. cenocepacia K56-2 and the induction of fatal pro-inflammatory responses using a zebrafish infection model. Here, we show that ShvR, a LysR-type transcriptional regulator that is important for biofilm formation, rough colony morphotype and inflammation in a rat lung infection model, is also required for the induction of fatal pro-inflammatory responses in zebrafish larvae. ShvR was not essential, however, for bacterial survival and replication in macrophages. Temporal, rhamnose-induced restoration of shvR expression in the shvR mutant during intramacrophage stages unequivocally demonstrated a key role for ShvR in transition from intracellular persistence to acute fatal pro-inflammatory disease. ShvR has been previously shown to tightly control the expression of the adjacent afc gene cluster, which specifies the synthesis of a lipopeptide with antifungal activity. Mutation of afcE, encoding an acyl-CoA dehydrogenase, has been shown to give similar phenotypes as the shvR mutant. We found that, like shvR, afcE is also critical for the switch from intracellular persistence to fatal infection in zebrafish. The closely related B. cenocepacia H111 has been shown to be less virulent than K56-2 in several infection models, including Galleria mellonella and rats. Interestingly, constitutive expression of shvR in H111 increased virulence in zebrafish larvae to almost K56-2 levels in a manner that absolutely required afc. These data confirm a critical role for afc in acute virulence caused by B. cenocepacia that depends on strain-specific regulatory control by ShvR. We propose that ShvR and AFC are important virulence factors of the more virulent Bcc species, either through pro-inflammatory effects of the lipopeptide AFC, or through AFC-dependent membrane properties.


Assuntos
Infecções por Burkholderia/microbiologia , Burkholderia cenocepacia/patogenicidade , Macrófagos/microbiologia , Virulência/fisiologia , Animais , Peixe-Zebra
4.
Int J Mol Sci ; 19(6)2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29848957

RESUMO

Burkholderia cepacia complex (BCC) bacteria are a group of opportunistic pathogens that cause severe lung infections in cystic fibrosis (CF). Treatment of BCC infections is difficult, due to the inherent and acquired multidrug resistance of BCC. There is a pressing need to find new bacterial targets for antimicrobials. Here, we demonstrate that the novel compound Q22, which is related to the bacterial cytoskeleton destabilising compound A22, can reduce the growth rate and inhibit growth of BCC bacteria. We further analysed the phenotypic effects of Q22 treatment on BCC virulence traits, to assess its feasibility as an antimicrobial. BCC bacteria were grown in the presence of Q22 with a broad phenotypic analysis, including resistance to H2O2-induced oxidative stress, changes in the inflammatory potential of cell surface components, and in-vivo drug toxicity studies. The influence of the Q22 treatment on inflammatory potential was measured by monitoring the cytokine responses of BCC whole cell lysates, purified lipopolysaccharide, and purified peptidoglycan extracted from bacterial cultures grown in the presence or absence of Q22 in differentiated THP-1 cells. BCC bacteria grown in the presence of Q22 displayed varying levels of resistance to H2O2-induced oxidative stress, with some strains showing increased resistance after treatment. There was strain-to-strain variation in the pro-inflammatory ability of bacterial lysates to elicit TNFα and IL-1ß from human myeloid cells. Despite minimal toxicity previously shown in vitro with primary CF cell lines, in-vivo studies demonstrated Q22 toxicity in both zebrafish and mouse infection models. In summary, destabilisation of the bacterial cytoskeleton in BCC, using compounds such as Q22, led to increased virulence-related traits in vitro. These changes appear to vary depending on strain and BCC species. Future development of antimicrobials targeting the BCC bacterial cytoskeleton may be hampered if such effects translate into the in-vivo environment of the CF infection.


Assuntos
Anti-Infecciosos/uso terapêutico , Complexo Burkholderia cepacia/metabolismo , Complexo Burkholderia cepacia/patogenicidade , Citoesqueleto/metabolismo , Animais , Infecções por Burkholderia/tratamento farmacológico , Infecções por Burkholderia/prevenção & controle , Modelos Animais de Doenças , Humanos , Camundongos , Células THP-1 , Peixe-Zebra
6.
Microb Cell ; 4(10): 362-364, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-29082233

RESUMO

Opportunistic pathogens are a worldwide cause of mortality and morbidity, and infections with intrinsically antibiotic-resistant pathogens have a large clinical, social and economic impact. Bacteria belonging to the Burkholderia cepacia complex (Bcc), ubiquitous in natural and industrial environments, are notorious pathogens for individuals with cystic fibrosis (CF). In addition, Burkholderia cenocepacia is emerging as the culprit of non-CF related, sometimes fatal infections. Knowledge of the underlying infection mechanism of these pathogens is important for efficient treatment, however, to date not much is known about the lifestyle of Bcc bacteria during infection. In our recent study published in PLoS Pathogens, we provide experimental evidence that macrophages are critically important for proliferation of B. cenocepacia, and are major drivers of fatal pro-inflammatory infections in zebrafish larvae. This is in agreement with recent clinical information showing that B. cenocepacia is mainly localised in phagocytes in infected CF lungs. A predominant intramacrophage stage and a host-detrimental role for macrophages have major implications for treatment strategies of both CF and non-CF infections. Intracellular survival of bacteria traditionally classified as extracellular, including Staphylococcus aureus and Pseudomonas aeruginosa, is an emerging theme. Our finding that macrophages are essential for proliferation of B. cenocepacia in the host suggests a new paradigm for Bcc infections and urges the development of novel anti-infectious therapies to efficiently disarm these intrinsically antibiotic resistant facultative intracellular pathogens.

7.
PLoS Pathog ; 13(6): e1006437, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28651010

RESUMO

Bacteria of the Burkholderia cepacia complex (Bcc) can cause devastating pulmonary infections in cystic fibrosis (CF) patients, yet the precise mechanisms underlying inflammation, recurrent exacerbations and transition from chronic stages to acute infection and septicemia are not known. Bcc bacteria are generally believed to have a predominant extracellular biofilm life style in infected CF lungs, similar to Pseudomonas aeruginosa, but this has been challenged by clinical observations which show Bcc bacteria predominantly in macrophages. More recently, Bcc bacteria have emerged in nosocomial infections of patients hospitalized for reasons unrelated to CF. Research has abundantly shown that Bcc bacteria can survive and replicate in mammalian cells in vitro, yet the importance of an intracellular life style during infection in humans is unknown. Here we studied the contribution of innate immune cell types to fatal pro-inflammatory infection caused by B. cenocepacia using zebrafish larvae. In strong contrast to the usual protective role for macrophages against microbes, our results show that these phagocytes significantly worsen disease outcome. We provide new insight that macrophages are critical for multiplication of B. cenocepacia in the host and for development of a fatal, pro-inflammatory response that partially depends on Il1-signalling. In contrast, neutrophils did not significantly contribute to disease outcome. In subcutaneous infections that are dominated by neutrophil-driven phagocytosis, the absence of a functional NADPH oxidase complex resulted in a small but measurably higher increase in bacterial growth suggesting the oxidative burst helps limit bacterial multiplication; however, neutrophils were unable to clear the bacteria. We suggest that paradigm-changing approaches are needed for development of novel antimicrobials to efficiently disarm intracellular bacteria of this group of highly persistent, opportunistic pathogens.


Assuntos
Burkholderia cenocepacia/isolamento & purificação , Infecção Hospitalar/microbiologia , Inflamação/microbiologia , Macrófagos/microbiologia , Neutrófilos/microbiologia , Animais , Infecções por Burkholderia/imunologia , Complexo Burkholderia cepacia/imunologia , Fibrose Cística/complicações , Humanos , Pulmão/microbiologia , Neutrófilos/imunologia , Fagocitose/imunologia , Pseudomonas aeruginosa/fisiologia , Infecções Respiratórias/microbiologia
8.
Appl Environ Microbiol ; 83(13)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28432094

RESUMO

The Burkholderia cepacia complex (Bcc) displays a wealth of metabolic diversity with great biotechnological potential, but the utilization of these bacteria is limited by their opportunistic pathogenicity to humans. The third replicon of the Bcc, megaplasmid pC3 (0.5 to 1.4 Mb, previously chromosome 3), is important for various phenotypes, including virulence, antifungal, and proteolytic activities and the utilization of certain substrates. Approximately half of plasmid pC3 is well conserved throughout sequenced Bcc members, while the other half is not. To better locate the regions responsible for the key phenotypes, pC3 mutant derivatives of Burkholderia cenocepacia H111 carrying large deletions (up to 0.58 Mb) were constructed with the aid of the FLP-FRT (FRT, flippase recognition target) recombination system from Saccharomyces cerevisiae The conserved region was shown to confer near-full virulence in both Caenorhabditis elegans and Galleria mellonella infection models. Antifungal activity was unexpectedly independent of the part of pC3 bearing a previously identified antifungal gene cluster, while proteolytic activity was dependent on the nonconserved part of pC3, which encodes the ZmpA protease. To investigate to what degree pC3-encoded functions are dependent on chromosomally encoded functions, we transferred pC3 from Burkholderia cenocepacia K56-2 and Burkholderia lata 383 into other pC3-cured Bcc members. We found that although pC3 is highly important for virulence, it was the genetic background of the recipient that determined the pathogenicity level of the hybrid strain. Furthermore, we found that important phenotypes, such as antifungal activity, proteolytic activity, and some substrate utilization capabilities, can be transferred between Bcc members using pC3.IMPORTANCE The Burkholderia cepacia complex (Bcc) is a group of closely related bacteria with great biotechnological potential. Some strains produce potent antifungal compounds and can promote plant growth or degrade environmental pollutants. However, their agricultural potential is limited by their opportunistic pathogenicity, particularly for cystic fibrosis patients. Despite much study, their virulence remains poorly understood. The third replicon, pC3, which is present in all Bcc isolates and is important for pathogenicity, stress resistance, and the production of antifungal compounds, has recently been reclassified from a chromosome to a megaplasmid. In this study, we identified regions on pC3 important for virulence and antifungal activity and investigated the role of the chromosomal background for the function of pC3 by exchanging the megaplasmid between different Bcc members. Our results may open a new avenue for the construction of antifungal but nonpathogenic Burkholderia hybrids. Such strains may have great potential as biocontrol strains for protecting fungus-borne diseases of plant crops.


Assuntos
Infecções por Burkholderia/microbiologia , Complexo Burkholderia cepacia/genética , Complexo Burkholderia cepacia/patogenicidade , Plasmídeos/genética , Animais , Complexo Burkholderia cepacia/metabolismo , Caenorhabditis elegans/microbiologia , Humanos , Lepidópteros/microbiologia , Plasmídeos/metabolismo , Replicon , Virulência
9.
Front Mol Biosci ; 3: 16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27200362

RESUMO

Burkholderia cenocepacia is both a plant pathogen and the cause of serious opportunistic infections, particularly in cystic fibrosis patients. B. cenocepacia K56-2 harbors a native plasmid named Ptw for its involvement in the Plant Tissue Watersoaking phenotype. Ptw has also been reported to be important for survival in human cells. Interestingly, the presence of PtwC, a homolog of the conjugative relaxase TrwC of plasmid R388, suggests a possible function for Ptw in conjugative DNA transfer. The ptw region includes Type IV Secretion System genes related to those of the F plasmid. However, genes in the adjacent region shared stronger homology with the R388 genes involved in conjugative DNA metabolism. This region included the putative relaxase ptwC, a putative coupling protein and accessory nicking protein, and a DNA segment with high number of inverted repeats and elevated AT content, suggesting a possible oriT. Although we were unable to detect conjugative transfer of the Ptw resident plasmid, we detected conjugal mobilization of a co-resident plasmid containing the ptw region homologous to R388, demonstrating the cloned ptw region contains an oriT. A similar plasmid lacking ptwC could not be mobilized, suggesting that the putative relaxase PtwC must act in cis on its oriT. Remarkably, we also detected mobilization of a plasmid containing the Ptw oriT by the R388 relaxase TrwC, yet we could not detect PtwC-mediated mobilization of an R388 oriT-containing plasmid. Our data unambiguously show that the Ptw plasmid harbors DNA transfer functions, and suggests the Ptw plasmid may play a dual role in horizontal DNA transfer and eukaryotic infection.

10.
J Infect Dis ; 211(11): 1769-78, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25505297

RESUMO

Brucella are intracellular bacterial pathogens that use a type IV secretion system (T4SS) to escape host defenses and create a niche in which they can multiply. Although the importance of Brucella T4SS is clear, little is known about its interactions with host cell structures. In this study, we identified the eukaryotic protein CD98hc as a partner for Brucella T4SS subunit VirB2. This transmembrane glycoprotein is involved in amino acid transport, modulation of integrin signaling, and cell-to-cell fusion. Knockdown of CD98hc expression in HeLa cells demonstrated that it is essential for Brucella infection. Using knockout dermal fibroblasts, we confirmed its role for Brucella but found that it is not required for Salmonella infection. CD98hc transiently accumulates around the bacteria during the early phases of infection and is required for both optimal bacterial uptake and intracellular multiplication of Brucella. These results provide new insights into the complex interplay between Brucella and its host.


Assuntos
Brucella/patogenicidade , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Espaço Intracelular/microbiologia , Animais , Proteínas da Membrana Bacteriana Externa/metabolismo , Brucella/metabolismo , Brucelose/metabolismo , Brucelose/microbiologia , Células Cultivadas , Fibroblastos/química , Fibroblastos/metabolismo , Fibroblastos/microbiologia , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Técnicas de Inativação de Genes , Células HeLa , Interações Hospedeiro-Patógeno/genética , Humanos , Espaço Intracelular/química , Espaço Intracelular/metabolismo , Camundongos , Salmonella , Vacúolos/metabolismo , Vacúolos/microbiologia , Fatores de Virulência/metabolismo
11.
Methods Mol Biol ; 1197: 41-66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25172274

RESUMO

In recent years the zebrafish has gained enormous attention in infection biology, and many protocols have been developed to study interaction of both human and fish pathogens, including viruses, fungi, and bacteria, with the host. Especially the extraordinary possibilities for live imaging of disease processes in the transparent embryos using fluorescent bacteria and cell-specific reporter fish combined with gene knockdown, transcriptome, and genetic studies have dramatically advanced our understanding of disease mechanisms. The zebrafish embryo is amenable to study virulence of both extracellular and facultative intracellular pathogens introduced through the technique of microinjection. Several protocols have been published that address the different sites of injection, antisense strategies, imaging, and production of transgenic fish in detail. Here we describe a protocol to study the virulence profiles, ranging from acute fatal to persistent, of bacteria belonging to the Burkholderia cepacia complex. This standard operating protocol combines simple survival assays, analysis of bacterial kinetics, analysis of the early innate immune response with qRT-PCR, and the use of transgenic reporter fish to study interactions with host phagocytes, and is also applicable to other pathogens.


Assuntos
Bactérias/patogenicidade , Infecções Bacterianas/microbiologia , Embrião não Mamífero/microbiologia , Peixe-Zebra/microbiologia , Animais , Modelos Animais de Doenças , Virulência
12.
Methods Mol Biol ; 1197: 103-21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25172277

RESUMO

Many pathogenic bacteria introduce virulence proteins, also called effector proteins, into host cells to accomplish infection. Such effector proteins are often translocated into host cells by bacterial type III (T3SS) or type IV secretion systems (T4SS). To better understand the molecular mechanisms underlying virulence, it is essential to identify the effector proteins and determine their functions. Several reporter assays have been established to identify translocated effector proteins and verify T3SS- or T4SS-dependent transport into host cells. Here we describe a protocol to monitor the translocation of candidate effector proteins using Cre recombinase as a reporter, and more specifically how this Cre Reporter Assay for Translocation (CRAfT) can be used to detect translocation of Vir proteins from Agrobacterium tumefaciens into yeast and plant cells. The assay can be adapted for the study of the T3SS or T4SS of human pathogens.


Assuntos
Transporte Proteico/fisiologia , Agrobacterium tumefaciens/metabolismo , Agrobacterium tumefaciens/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Sistemas de Secreção Bacterianos/fisiologia , Humanos , Integrases/metabolismo , Transporte Proteico/genética
13.
FEBS Lett ; 587(21): 3412-6, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24076024

RESUMO

BtpA/Btp1/TcpB is a virulence factor produced by Brucella species that possesses a Toll interleukin-1 receptor (TIR) domain. Once delivered into the host cell, BtpA interacts with MyD88 to interfere with TLR signalling and modulates microtubule dynamics. Here the crystal structure of the BtpA TIR domain at 3.15 Å is presented. The structure shows a dimeric arrangement of a canonical TIR domain, similar to the Paracoccus denitrificans Tir protein but secured by a unique long N-terminal α-tail that packs against the TIR:TIR dimer. Structure-based mutations and multi-angle light scattering experiments characterized the BtpA dimer conformation in solution. The structure of BtpA will help with studies to understand the mechanisms involved in its interactions with MyD88 and with microtubules.


Assuntos
Proteínas de Bactérias/química , Brucella melitensis/imunologia , Brucella melitensis/metabolismo , Receptores de Interleucina-1/química , Proteínas de Bactérias/metabolismo , Humanos , Modelos Moleculares , Paracoccus denitrificans/metabolismo , Multimerização Proteica , Estrutura Terciária de Proteína , Receptores de Interleucina-1/metabolismo , Relação Estrutura-Atividade , Fatores de Virulência/química , Fatores de Virulência/metabolismo
14.
PLoS One ; 7(3): e34294, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22457832

RESUMO

Recently, the worldwide propagation of clonal CTX-M-15-producing Escherichia coli isolates, namely ST131 and O25b:H4, has been reported. Like the majority of extra-intestinal pathogenic E. coli isolates, the pandemic clone ST131 belongs to phylogenetic group B2, and has recently been shown to be highly virulent in a mouse model, even though it lacks several genes encoding key virulence factors (Pap, Cnf1 and HlyA). Using two animal models, Caenorhabditis elegans and zebrafish embryos, we assessed the virulence of three E. coli ST131 strains (2 CTX-M-15- producing urine and 1 non-ESBL-producing faecal isolate), comparing them with five non-ST131 B2 and a group A uropathogenic E. coli (UPEC). In C. elegans, the three ST131 strains showed intermediate virulence between the non virulent group A isolate and the virulent non-ST131 B2 strains. In zebrafish, the CTX-M-15-producing ST131 UPEC isolates were also less virulent than the non-ST131 B2 strains, suggesting that the production of CTX-M-15 is not correlated with enhanced virulence. Amongst the non-ST131 B2 group isolates, variation in pathogenic potential in zebrafish embryos was observed ranging from intermediate to highly virulent. Interestingly, the ST131 strains were equally persistent in surviving embryos as the non-ST131-group B2 strains, suggesting similar mechanisms may account for development of persistent infection. Optical maps of the genome of the ST131 strains were compared with those of 24 reference E. coli strains. Although small differences were seen within the ST131 strains, the tree built on the optical maps showed that these strains belonged to a specific cluster (86% similarity) with only 45% similarity with the other group B2 strains and 25% with strains of group A and D. Thus, the ST131 clone has a genetic composition that differs from other group B2 strains, and appears to be less virulent than previously suspected.


Assuntos
Escherichia coli/patogenicidade , Virulência/genética , Escherichia coli/genética , Escherichia coli/virologia , Genoma Bacteriano
15.
FEBS Open Bio ; 2: 71-5, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23650582

RESUMO

Complementation for virulence of a non-polar virB5 mutant in Brucella suis 1330 was not possible using a pBBR-based plasmid but was with low copy vector pGL10. Presence of the pBBR-based replicon in wildtype B. suis had a dominant negative effect, leading to complete attenuation in J774 macrophages. This was due to pleiotropic effects on VirB protein expression due to multiple copies of the virB promoter region and over expression of VirB5. Functional complementation of mutants in individual components of multiprotein complexes such as bacterial secretion systems, are often problematic; this study highlights the importance of using a low copy vector.

16.
Infect Immun ; 78(4): 1495-508, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20086083

RESUMO

Bacteria belonging to the "Burkholderia cepacia complex" (Bcc) often cause fatal pulmonary infections in cystic fibrosis patients, yet little is know about the underlying molecular mechanisms. These Gram-negative bacteria can adopt an intracellular lifestyle, although their ability to replicate intracellularly has been difficult to demonstrate. Here we show that Bcc bacteria survive and multiply in macrophages of zebrafish embryos. Local dissemination by nonlytic release from infected cells was followed by bacteremia and extracellular replication. Burkholderia cenocepacia isolates belonging to the epidemic electrophoretic type 12 (ET12) lineage were highly virulent for the embryos; intravenous injection of <10 bacteria of strain K56-2 killed embryos within 3 days. However, small but significant differences between the clonal ET12 isolates K56-2, J2315, and BC7 were evident. In addition, the innate immune response in young embryos was sufficiently developed to control infection with other less virulent Bcc strains, such as Burkholderia vietnamiensis FC441 and Burkholderia stabilis LMG14294. A K56-2 cepR quorum-sensing regulator mutant was highly attenuated, and its ability to replicate and spread to neighboring cells was greatly reduced. Our data indicate that the zebrafish embryo is an excellent vertebrate model to dissect the molecular basis of intracellular replication and the early innate immune responses in this intricate host-pathogen interaction.


Assuntos
Infecções por Burkholderia/veterinária , Complexo Burkholderia cepacia/crescimento & desenvolvimento , Citoplasma/microbiologia , Macrófagos/microbiologia , Peixe-Zebra/microbiologia , Animais , Bacteriemia/microbiologia , Infecções por Burkholderia/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Viabilidade Microbiana , Análise de Sobrevida , Virulência , Peixe-Zebra/imunologia
17.
Plant Physiol ; 145(4): 1282-93, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17921337

RESUMO

Site-specific integration is an attractive method for the improvement of current transformation technologies aimed at the production of stable transgenic plants. Here, we present a Cre-based targeting strategy in Arabidopsis (Arabidopsis thaliana) using recombinase-mediated cassette exchange (RMCE) of transferred DNA (T-DNA) delivered by Agrobacterium tumefaciens. The rationale for effective RMCE is the precise exchange of a genomic and a replacement cassette both flanked by two heterospecific lox sites that are incompatible with each other to prevent unwanted cassette deletion. We designed a strategy in which the coding region of a loxP/lox5171-flanked bialaphos resistance (bar) gene is exchanged for a loxP/lox5171-flanked T-DNA replacement cassette containing the neomycin phosphotransferase (nptII) coding region via loxP/loxP and lox5171/lox5171 directed recombination. The bar gene is driven by the strong 35S promoter, which is located outside the target cassette. This placement ensures preferential selection of RMCE events and not random integration events by expression of nptII from this same promoter. Using root transformation, during which Cre was provided on a cotransformed T-DNA, 50 kanamycin-resistant calli were selected. Forty-four percent contained a correctly exchanged cassette based on PCR analysis, indicating the stringency of the selection system. This was confirmed for the offspring of five analyzed events by Southern-blot analysis. In four of the five analyzed RMCE events, there were no additional T-DNA insertions or they easily segregated, resulting in high-efficiency single-copy RMCE events. Our approach enables simple and efficient selection of targeting events using the advantages of Agrobacterium-mediated transformation.


Assuntos
Arabidopsis/genética , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Integrases/metabolismo , Rhizobium/genética , Southern Blotting , DNA Bacteriano , Reação em Cadeia da Polimerase
18.
J Bacteriol ; 188(23): 8222-30, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17012398

RESUMO

Agrobacterium tumefaciens and Agrobacterium rhizogenes are closely related plant pathogens that cause different diseases, crown gall and hairy root. Both diseases result from transfer, integration, and expression of plasmid-encoded bacterial genes located on the transferred DNA (T-DNA) in the plant genome. Bacterial virulence (Vir) proteins necessary for infection are also translocated into plant cells. Transfer of single-stranded DNA (ssDNA) and Vir proteins requires a type IV secretion system, a protein complex spanning the bacterial envelope. A. tumefaciens translocates the ssDNA-binding protein VirE2 into plant cells, where it binds single-stranded T-DNA and helps target it to the nucleus. Although some strains of A. rhizogenes lack VirE2, they are pathogenic and transfer T-DNA efficiently. Instead, these bacteria express the GALLS protein, which is essential for their virulence. The GALLS protein can complement an A. tumefaciens virE2 mutant for tumor formation, indicating that GALLS can substitute for VirE2. Unlike VirE2, GALLS contains ATP-binding and helicase motifs similar to those in TraA, a strand transferase involved in conjugation. Both GALLS and VirE2 contain nuclear localization sequences and a C-terminal type IV secretion signal. Here we show that mutations in any of these domains abolished the ability of GALLS to substitute for VirE2.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Núcleo Celular/metabolismo , Rhizobium/química , Transdução de Sinais , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/metabolismo , Teste de Complementação Genética , Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Alinhamento de Sequência
19.
Infect Immun ; 73(11): 7779-83, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16239585

RESUMO

An 18,228-bp region containing open reading frames predicted to be derived from the IncP plasmid or phage ancestors is present in the genomes of Brucella suis biovars 1 to 4, B. canis, B. neotomae, and strains isolated from marine mammals, but not in B. melitensis, B. abortus, B. ovis, and B. suis biovar 5. The presence of circular excision intermediates and the results of an analysis of sequenced bacterial genomes suggest that the region downstream of the guaA gene is a hotspot for site-specific integration of foreign DNA mediated by a CP4-like integrase.


Assuntos
Brucella/genética , Evolução Molecular , Genes Bacterianos/genética , Genoma Bacteriano , Ilhas Genômicas/genética , Recombinação Genética/genética , Sequência de Bases , Brucella/classificação , Brucella/enzimologia , DNA Bacteriano/genética , Integrases/genética , Especificidade por Substrato , Fatores de Virulência
20.
Proc Natl Acad Sci U S A ; 102(3): 832-7, 2005 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-15644442

RESUMO

Several human pathogens and the plant pathogen Agrobacterium tumefaciens use a type IV secretion system for translocation of effector proteins into host cells. How effector proteins are selected for transport is unknown, but a C-terminal transport signal is present in the proteins translocated by the A. tumefaciens VirB/D4 type IV secretion system. We characterized this signal in the virulence protein VirF by alanine scanning and further site-directed mutagenesis. The Cre recombinase was used as a reporter to measure the translocation efficiency of Cre-Vir fusions from A. tumefaciens to Arabidopsis. The data unambiguously showed that positive charge is an essential characteristic of the C-terminal transport signal. We increased the sensitivity of this translocation assay by modifying the Cre-induced readout in host cells from kanamycin resistance to GFP expression. This improvement allowed us to detect translocation of the VirD2 relaxase protein in the absence of transferred DNA, showing that attachment to the transferred DNA is not essential for transport by the VirB/D4 system. We also found another translocated effector protein, namely the VirD5 protein encoded by the tumor-inducing plasmid. According to secondary structure predictions, the C termini of all VirB/D4-translocated proteins identified so far are unstructured; however, they contain a characteristic hydropathic profile. Based on sequence alignments and mutational analysis of VirF, we conclude that the C-terminal transport signal for recruitment and translocation of effector proteins by the A. tumefaciens VirB/D4 system is hydrophilic and has a net positive charge with a consensus motif of R-X(7)-R-X-R-X-R-X-X(n)>.


Assuntos
Proteínas de Membrana Transportadoras/química , Sinais Direcionadores de Proteínas , Rhizobium/patogenicidade , Fatores de Virulência/química , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transporte Biológico , Sequência Consenso , Genes Reporter , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutagênese Sítio-Dirigida , Sinais Direcionadores de Proteínas/genética , Rhizobium/química , Eletricidade Estática , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...